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Abstract
Luminescence decay with time often shows a power-law dependence of the
form intensity I ∝ t−k , where t is time and k is usually in the range 1–1.5.
It is shown here that this power law can result from the tunnelling of trapped
electrons to recombination centres that are randomly distributed, and that the
range of exponents matches that of the observations. The explanation accounts
for the most extreme case of an observed t−1.06 dependence extending over nine
decades of time.

1. Introduction

Luminescence is the light emitted by matter in response to a stimulus or excitation. As expected,
the intensity normally decreases with time after the excitation, but the form of the decay is not
always well understood. The latest comprehensive review of the topic appears to be that of
Jonscher and de Polignac (1984). They note that when, after excitation, the electron becomes
trapped at a defect, the decay often follows a power law of the form intensity I ∝ t−k , where
t is time and k is a constant which is usually between 1 and 1.5, but can be less than 1 and as
high as 2. The power-law decay is observed over 3–4 decades of time, though in one case it
covers nine decades.

An exponential decay is expected for the case of thermal excitation from a set of identical
traps. Non-exponential decays can arise from thermal excitation of electrons from traps when
there is a distribution of traps; in particular, a power-law decay results when the distribution
is exponential in energy (Randall and Wilkins 1945; Chen and Kirsch 1981, see also, p. 172).
Non-exponential decays can also result when retrapping occurs during optical excitation of
electrons from traps (McKeever et al 1997, Chen and Leung 2003), but it seems unlikely that
models of this kind can account for an extended power-law decay. Jonscher and de Polignac
(1984) attempted to fill the gap with a general theory, but did not offer a specific mechanism.
Klik and Chang (1993) pointed out that ‘Ever since the pioneering work of Street and Wolley
(sic) (1949, 1952, 1956) and Gaunt (1976, 1986) it has been recognized that logarithmic
relaxation arises in composite systems as an average (net) evolution law for a large number of
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exponentially decaying individual components’; the proposal described below can be regarded
as being in this category.

The theory proposed here is based on the tunnelling of electrons from traps to
recombination centres; it provides an explanation for extended power-law decay with non-
integral exponents both smaller and larger than 1, and in particular can explain the observed
t−1.06 decay over nine decades of time. Although tunnelling was considered as an explanation
earlier (e.g. Thomas et al 1965, Riehl 1970, Delbecq et al 1974, Avouris and Morgan 1981)
the simple theory given here has not been proposed.

Our interest in the topic arises from a desire to understand the processes occurring in
feldspars that permit optical dating (Aitken 1998); phosphorescence after ionizing radiation
or illumination is observed to decay as a power law (Visocekas 2002, Baril and Huntley 2003,
Baril 2002), and the decay of optically excited luminescence shows power-law behaviour
(Bailiff and Poolton 1991, Bailiff and Barnett 1994, Baril and Huntley 2003).

2. Theory

The assumptions are:

(1) There are defects in the crystal that are traps for electrons. There are electrons in some
of these traps as a result of an excitation pulse. No assumptions are necessary about their
distribution.

(2) There are other defects in the crystal to which an electron can tunnel from a trap and these
are randomly distributed. Their density is much higher than that of the trapped electrons,
so their density is effectively constant. These centres will be referred to as recombination
centres, and their density will be denoted by ρ.

(3) The tunnelling of an electron to a nearby recombination centre is a random process with a
mean lifetime, τ , given by the standard formula for tunnelling through a potential barrier
of constant potential

τ = s−1eαr (1)

where s can be thought of as an attempt-to-escape frequency, r is the tunnelling distance,
and α is a constant (Thomas et al 1965, Riehl 1970). For an electron in an atom-sized
box, s ≈ 3 × 1015 s−1.

(4) An electron tunnels to the nearest recombination centre only. The rapid increase of τ with
r makes the error introduced by this assumption insignificant.

The probability that there are no recombination centres in a volume V is e−ρV ; thus the
probability that there is no recombination centre within a distance r of a trap is

exp{−4πρr3/3} = exp{−(r ′)3}
where r ′ is a dimensionless variable defined by

r ′ ≡ {4πρ/3}1/3r. (2)

The probability that the nearest recombination centre lies at a distance between r ′ and r ′ + dr ′
is

p(r ′) dr ′ = 3(r ′)2 exp{−(r ′)3} dr ′. (3)

The distribution p(r ′) is shown by the bold curve in figure 1.
The number of trapped electrons remaining after a time, t , is found by integrating

the probability of the nearest recombination centre being at a distance r multiplied by the
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Figure 1. The solid line is the probability distribution of distances between trapped electrons and
the nearest recombination centres in terms of the dimensionless variable r ′ , after an excitation
pulse. The mean lifetime of the electrons is shown in the upper scale for the particular s and
recombination centre density indicated; ρ′ is the dimensionless recombination centre density and
is defined in equation (5). The distributions of trapped electrons after 1 s and 1000 s are shown
by the dashed lines; these are essentially coincident with the solid line at large values of r ′ . The
fraction of electrons still trapped at a given time is given by the area under a dashed line.

probability that tunnelling has not occurred, exp(−t/τ). Thus, using n to represent the trapped
electron population, and ni its initial value,

n(t)

ni
=

∫ ∞

0
3(r ′)2 exp[−(r ′)3] exp(−t/τ) dr ′. (4)

Note that τ depends on r ′ through equations (1) and (2).
The left dashed line of figure 1 shows the integrand at 1 s after a pulse excitation for

a particular density of recombination centres. Notice that for r ′ < 0.47 essentially all the
trapped electrons have tunnelled out, while for r ′ > 0.57 only a small fraction of the trapped
electrons have tunnelled out. The right dashed line in figure 1 shows the integrand at 1 ks.
It is important to notice that as time progresses this dashed line, representing the boundary
of the trapped electron population, moves to the right, and that this occurs linearly on a
logarithmic timescale. This is because equal changes in r ′ yield equal changes in log(τ ) (see
equation (1)). If for those traps for which tunnelling is significant p(r ′) is roughly constant, a
good approximation to the integral, equation (4), is that n decreases linearly with log(t). The
luminescence intensity is proportional to −dn/dt and hence proportional to t−1. This can be
derived formally by noting that the luminescence intensity is proportional to the time derivative
of equation (4), putting the p(r ′) terms outside the integral, and integrating (see Avouris and
Morgan 1981, for details). This approximation will be particularly good if the relevant electrons
are at the peak of the p(r ′) distribution, and can readily explain a t−1 dependence observed
experimentally. If the tunnelling electrons are those with a tunnelling distance to the left of the
peak of the p(r ′) distribution, where p(r ′) is increasing, then the intensity will increase with
time relative to t−1, thus an exponent >−1 is expected. Likewise if the tunnelling electrons
are those with a tunnelling distance to the right of the peak, then an exponent <−1 is expected.
What is not obvious is that in these situations the decay may follow a power law, and this will
be shown.
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Figure 2. The number of electrons remaining trapped as a function of time. The different curves
are for different densities of recombination centres, evaluated using equation (4). The upper two
bold lines cover the period ∼1 ms to ∼1 month if s = 3 × 1015 s−1.

It is convenient at this point to introduce the dimensionless variable ρ ′ for the density of
recombination centres, defined by

ρ ′ ≡ 4πρ

3α3
(5)

where ρ ′ is the number of recombination centres within a sphere of radius α−1. Plots of n/ni

versus log(st) are shown in figure 2 for several values of ρ ′. These were obtained by evaluating
the integral in equation (4).

A considerable simplification of the mathematics of equation (4) can be made using the
following argument. Consider those trapped electrons with a particular electron–recombination
centre distance; for times very much shorter than the mean life no significant tunnelling has
occurred, while for times very much longer than the mean life nearly all the electrons have
tunnelled out. The approximation to be made is that for t < τ no tunnelling has occurred,
while for t > τ all electrons have tunnelled out; this approximation is justified because it is
the logarithm of time that is the important variable, and corresponds to replacing the dashed
lines in figure 1 by vertical lines. The critical tunnelling distance for a time, t , is thus from
equation (1)

rc = α−1 ln[st] st > 1. (6)

For trapped electrons for which the nearest recombination centre is closer than this
distance, tunnelling will have occurred, and for all others tunnelling will not have occurred.
As t increases, more and more electrons will have tunnelled to nearby recombination centres.
With this approximation the trapped electron density, n, will be given by the density of those
without a recombination centre within a sphere of radius rc; thus

n

ni
= exp{−ρ ′[ln(st)]3}. (7)
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Figure 3. Log[intensity = −(1/ni) dn/dt] versus log(time) for the four regions of the decay curves
shown in bold in figure 2. The points were calculated by differentiating equation (4), although use
of equation (8) makes a barely perceptible difference. The solid lines are linear fits to these points
and the exponents obtained are shown on the graph. It is seen that a power law is a good fit for all.
Except for the uppermost set, the data have been shifted vertically for clarity.

A comparison of the integral in equation (4) and the approximation of equation (7) shows good
agreement, and that agreement to better than 5% can be obtained over nearly all of the region
shown in figure 2 by replacing st in equation (7) by 1.8st .

The luminescence intensity, I , is proportional to the rate of decrease of n with time. This
can be obtained by differentiating equation (4), or by differentiating equation (7); the latter
yields

I ∝ − 1

ni

dn

dt
= 3ρ ′t−1[ln(st)]2 exp{−ρ ′[ln(st)]3}. (8)

Some log–log plots of (1/ni) · dn/dt versus st are shown in figure 3. These were obtained
by differentiating equation (4), but the difference using equation (8) is barely discernible (the
differences in log(I ) are all <0.06 for the points of figure 3). These plots are very close
to being linear and thus the relation between intensity and time follows a power law. The
exponents for linear fits to the points are given on the figure. For ρ ′ = 1 × 10−5 a fit to the
points calculated from equation (4) yields I ∝ t−0.997 accurately over ten orders of magnitude
of time. For the examples shown in figure 3 the exponents range from −0.958 to −1.50. For
values of ρ ′ smaller than 2 ×10−6 the exponent approaches a limit of about −0.95. For values
of ρ ′ larger than 10−4 a power law becomes an increasingly poor fit, with exponents becoming
rapidly increasingly negative.

3. Discussion

The power-law decay is of course an approximation to an exact solution, but a very good
approximation (figure 3), and it is not surprising that experimental data are interpreted as
showing a power-law decay. Outside the region shown in figure 3 the power law becomes an
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increasingly poor fit, and in concurrence some of the experimental data reviewed by Jonscher
and de Polignac show departures from the power law outside the power-law region.

The theory makes sense quantitatively. For example, assume that the tunnelling barrier
is E = 3 eV; then α = 9 × 109 m−1. If ρ = 5 × 1017 cm−3, then ρ ′ = 3 × 10−6, and for a
tunnelling distance of r = 4 nm, r ′ = 0.51 and τ = 1 s. Similarly for r = 7.5 nm, r ′ = 0.96
and τ = 1 Ma. These values are indicated in figure 1 and are of the right order to account
for our observations on tunnelling in feldspars (Huntley and Lamothe 2001, Huntley and Lian
2006).

Most of the data reviewed by Jonscher and de Polignac encompass a much shorter time
scale, with some times as short as 1 ns, and the nature of the experiments is such that one can
expect a much lower energy barrier. An example that may be more relevant to these data is:
E = 0.1 eV, α = 1.6×109 m−1, ρ ′ = 5×10−5, ρ = 5.1×1016 cm−3, r = 18 nm, r ′ = 1.06,
and τ = 1 ms.

The remarkable data of Cordier et al (1974), which cover nine orders of magnitude of
time, have an exponent of −1.06 (see the replotted data in Jonscher and de Polignac 1984).
For ρ ′ = 2.4 × 10−5, over the same range as shown for other values of ρ ′ in figure 3, the
exponent is −1.06. There is a very slight downwards curvature in the data of Cordier et al, as
is also noticeable for the ρ ′ = 5 × 10−5 points in figure 3; arriving at any conclusion from this
similarity is probably making too much of the theory.

The range of exponents found in figure 3 is −0.958 to −1.50. Of the 24 exponents listed
in the survey by Jonscher and de Polignac, table 1, all but six lie in this range; there are four
values of 2 and two of 0.5. The values of 0.5 cannot be accounted for in the present theory,
and may arise from two sets of traps (see Jonscher and de Polignac 1984, table 1). A value
of 2 can be accounted for only over a limited time range by the present theory and this is in
accord with the data summarized by Jonscher and de Polignac.

The theories of Thomas et al (1965), Riehl (1970), Delbecq et al (1974), Avouris and
Morgan (1981) are in some ways more complex than the one presented here because of the
situations that they attempt to describe. All of them omit the exponential term in equation (3),
and hence miss the maximum in the p(r) distribution which is responsible for the extended
range of the power law.

It is easy to make predictions from the theory, though practical tests may not be easy.
Varying the initial excitation pulse intensity will vary ni, and the luminescence intensity should
be proportional to it, but this is often likely to be the case in a theory. A more useful approach
would be to vary the density of recombination centres. One should see the exponent starting
at −0.95 and slowly becoming more negative as the concentration is increased. Also, the
intensity should reach a maximum at ρ ′ = [ln(st)]−3; if this could be seen it would allow the
determination of either s or α, assuming the other is known.

Thomas et al (1965) have suggested that equation (1) for the tunnelling probability should
have an addition factor of rm . While this will change the result in detail, it will not change the
main features. Over a range of a factor of ∼2 of r one can make a good approximation to rm

with exp(−cr), where c is a constant. Thus the effect is that of a modification to α.
The assumption that the recombination centres are randomly distributed may not always

be valid. From the arguments advanced earlier it is apparent that there is a possibility of
determining p(r) from I (t). Hama et al (1980) showed a nice method for doing this analytically
using a Laplace transform; it does, however, require I (t) data over many more orders of
magnitude of time than is usually the case for it to provide a convincing distribution, and even
then the assumption of the form of the tunnelling probability, equation (1), is a limitation.

Tunnelling may take place from the ground state of the trap; it may also take place from
an excited state in which case population of the excited state can be either thermal or optical or
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both. This situation has been considered by Avouris and Morgan (1981) in their explanation of
luminescence decay of Zn2SiO4:Mn phosphor. The above theory should be just as applicable,
but with the frequency factor, s, multiplied by the fraction of time an electron spends in the
excited state before it tunnels out. The constant α will be smaller than for the ground state.
These factors will cause the probability of tunnelling from the excited state to be smaller or
larger than that of tunnelling from the ground state.

4. Conclusion

A simple theory of tunnelling from electron traps to a random distribution of recombination
centres is capable of explaining the power-law decay of luminescence that is observed with
exponents ranging from −0.95 to −1.5. Earlier tunnelling theories did not yield this result
because they did not use the complete form of the distribution of tunnelling distances.
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